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ABSTRACT

As several compilation and optimization techniques have been
proposed, equivalence checking for quantum circuits has become
essential in design flows. The state-of-the-art to this problem ob-
served that even small errors substantially affect the entire quantum
system. As a result, it exploited random simulations to prove the
non-equivalence of two quantum circuits. However, when errors
occurred close to outputs, it was hard for the work to prove the
non-equivalence of some non-equivalent quantum circuits under a
limited number of simulations. In this work, we propose a novel
simulation-based approach using a set of specially designed stimuli.
The simulation runs of the proposed approach is linear rather than
exponential to the number of quantum bits of a circuit. According
to the experimental results, the success rate of our approach is 100%
(100%) under a simulation run (execution time) constraint for a set
of benchmarks, while that of the state-of-the-art is only 69% (74%)
on average. Our approach also achieves a speedup of 26 on average.
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1 INTRODUCTION

Due to the potential of quantum computers, the research of quan-
tum computing has become popular in both academia and industry.
With the contributions from many researchers, the design flow
of quantum circuits including preprocessing [10][11], compilation
[6][13], optimization [3][4][9], and verification [1][2][8] has been
studied. Furthermore, from the fact that quantum circuits are not
easily accessible currently, simulation methods with classic com-
puters have been proposed [5][14]. Also, some open-source toolkits
such as IBM’s Qiskit [16] and Microsoft’s QDK [17] are available.

Since quantum circuits are generated by quantum compilation
from conventional logic circuits [6][13], we must ensure that the
functionalities from different quantum compilation techniques are
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equivalent. Moreover, we also need to guarantee that the functional-
ity of a quantum circuit remains the same after optimization. Thus,
the equivalence checking of quantum circuits is an important and
necessary task in design flows.

Various methods about equivalence checking of quantum cir-
cuits were proposed recently [1][8]. However, these methods com-
pletely computed the functionalities of two quantum circuits, which
was time-consuming. Therefore, a certain technique about accel-
erating the process of checking non-equivalence of two quantum
circuits was proposed in the state-of-the-art [2]. The main idea
of the state-of-the-art [2] is based on the observation that a small
error frequently leads to huge effect on the entire quantum sys-
tem. Because of the reversibility of quantum circuits, unlike the
fault-effect in logic circuits that may be masked during propagation,
the fault-effect in quantum circuits can be propagated out easily.
Therefore, the state-of-the-art [2] exploited random simulations to
detect the non-equivalence of two quantum circuits. However, the
effectiveness of this approach strongly depends on the stimuli that
check only one of 2𝑛 basis states at a time, where 𝑛 is the number of
quantum bits (qubits) in the quantum circuit. In some cases, it may
fail to detect the non-equivalence of two non-equivalent quantum
circuits under a limited amount of simulations.

In this work, we propose a robust approach using a set of spe-
cially designed stimuli instead of random stimuli to detect the non-
equivalence of two non-equivalent quantum circuits effectively and
efficiently. Our approach simulates at most (𝑛 + 1) patterns rather
than 2𝑛 patterns, where 𝑛 is the number of qubits of the quantum
circuit. To demonstrate the effectiveness of using such set of spe-
cial stimuli, we create erroneous benchmarks by injecting errors
into the circuits in RevLib [12]. The error types include randomly
removing, altering, and misplacing one quantum gate. According
to the experimental results, the success rate of our approach is
100% (100%), while that of the state-of-the-art is only 69% (74%)
under a simulation run (execution time) constraint. These results
are obtained by performing experiments with 100 different random
seeds on average.

The main contributions of this work are as follows:

• We present a novel concept of simulation, which uses a set
of specially designed stimuli rather than random stimuli.

• We propose an innovative approach, which is more robust for
detecting non-equivalence of two non-equivalent quantum
circuits than the state-of-the-art in terms of success rate.

The remainder of this paper is organized as follows. Section II
introduces backgrounds. Section III presents the proposed approach.
Section IV shows the experimental results. Finally, we conclude
this paper in Section V.

2 PRELIMINARIES
In this section, we introduce the necessary backgrounds of quan-

tum computing [7] and the advanced data structure used in quan-
tum computing, i.e., decision diagrams [15]. Moreover, we introduce
an equivalence checking model of quantum circuits.
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(a) (b)

Figure 1: (a) The unitary matrices describing the Hadamard
gate (H) and the swap gate (X). (b) A quantum circuit with a
single qubit and two gates.

2.1 Quantum Computing

Quantum computing relies on qubits to represent the state of
computation. Unlike logic bits used in classical computing, a qubit
is not limited to either basis state |0〉 or |1〉, but both of them. This
phenomenon is called superposition. Thus, a qubit is described as

𝛼0 |0〉 + 𝛼1 |1〉, where 𝛼0, 𝛼1 ∈ C. |𝛼20 | and |𝛼21 | represent the probabil-
ities that this qubit will collapse into |0〉 and |1〉 after measurement,
respectively. As a result, each qubit must satisfy the identity of

|𝛼20 | + |𝛼21 | = 1. For a quantum system with 𝑛 qubits, its state is

described as |𝜓 〉 = ∑
𝑥∈{0,1}𝑛 𝛼𝑥 |𝑥〉, and it satisfies

∑
𝑥∈{0,1}𝑛 |𝛼2𝑥 |

= 1. Typically, a state of an 𝑛-qubit quantum system is represented

by a column vector 𝑉 ∈ C2𝑛×1 and denoted as [𝛼0, 𝛼1, . . . , 𝛼2𝑛−1]T.
Quantum operations are represented by quantum gates in quan-

tum circuits and are able to manipulate single or multiple qubits,
which changes the state of a quantum system. Each quantum op-
eration in an 𝑛-qubit quantum circuit is represented by a unitary

matrix𝑀 ∈ C2𝑛×2𝑛 for computation. A unitary matrix𝑀 is defined

as𝑀−1 =𝑀∗, meaning that a unitary matrix’s inverse is identical
to its conjugate transpose. Fig. 1(a) shows two common quantum
operations manipulating a single qubit. A quantum circuit𝐺 is rep-
resented by a sequence of quantum operations, i.e., 𝑔0𝑔1 . . . 𝑔𝑡 , and
we can consider quantum computing to be a series of matrix-vector
multiplications. To satisfy the form of matrix-vector multiplications,
the unitary matrix describing 𝐺 is 𝑀𝑡 . . . 𝑀1𝑀0, where 𝑀𝑖 is the
unitary matrix describing 𝑔𝑖 , 𝑖 = 0 ∼ 𝑡 . For example, Fig. 1(b) shows

a simple quantum circuit𝐺 = 𝑔0𝑔1 =𝑀1𝑀0 =
1√
2

[
1 1
1 −1

] [
0 1
1 0

]
=

1√
2

[
1 1−1 1

]
. Typically, a pattern𝑉 simulating on a quantum circuit

is formulated as 𝐺 ·𝑉 =𝑀𝑡 . . . 𝑀0 ·𝑉 .

2.2 Decision Diagrams

The decision diagram is an advanced data structure to represent
a quantum state or a quantum operation. By sharing data in vectors
and matrices, this compact representation can extremely reduce
the complexity in computation and memory usage.

A quantum state𝑉 ∈ C2𝑛×1 is decomposed into two sub-vectors
𝑉0, 𝑉1 ∈ C2𝑛−1×1, where 𝑉 = [𝑉0 𝑉1]T, and this process is repeated
until each sub-vector remains only one element. For each decompo-
sition, a node is created in the decision diagram with two children
representing the resultant sub-vectors. When some sub-vectors
are identical, they share the same node. Each complex value in
the represented quantum state is distributed to the edges of the
decision diagram as the edge weights. We can retrieve a complex
value by multiplying all the weights of edges in the corresponding
path. Fig. 2 shows the decision diagram representing a quantum

state
[
1
2 0

1
2 0 0 0

1
2

1
2

]T
. To maintain the canonical representation,

we normalize weights by dividing each value by the first non-zero

Figure 2: The decision diagram representing the quantum

state of
[
1
2 0

1
2 0 0 0

1
2

1
2

]T
.

Figure 3: The decision diagram representing the CNOT gate.

value from the left, i.e., 12 in Fig. 2. To make the decision diagram
concise, the default weight of each edge is 1.

The way to create a decision diagram for a quantum operation
is similar to that of a quantum state. A quantum operation 𝑀 ∈
C
2𝑛×2𝑛 is recursively decomposed into four sub-matrices𝑀00,𝑀01,

𝑀10,𝑀11 ∈ C2𝑛−1×2𝑛−1 , where𝑀 =
[
𝑀00 𝑀01
𝑀10 𝑀11

]
. Fig. 3 shows the

decision diagram representing a controlled not gate (CNOT), which

is represented by a unitary matrix

[1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. When all the

elements in a sub-matrix are 0s, we use the 0-sub node marked as 0
in Fig. 3 to represent such a sub-matrix. Also, we can retrieve the
bold complex value in the matrix by multiplying all the weights on
the edges of the bold path.

After having the decision diagrams of quantum states and quan-
tum operations, we can perform a matrix-vector multiplication via
decision diagrams. The more details can be seen in [14] and [15].

2.3 Equivalence Checking Model of Quantum
Circuits

In this work, we use the equivalence checking model proposed in
[1] to examine if two quantum circuits𝐺 and𝑅 are equivalent or not.
Let 𝐺 =𝑀𝑡 . . . 𝑀1𝑀0 consisting of 𝑔0𝑔1 . . . 𝑔𝑡 and 𝑅 = 𝑁𝑡 ′ . . . 𝑁1𝑁0

consisting of 𝑟0𝑟1 . . . 𝑟𝑡 ′ , where 𝑀𝑖 and 𝑁 𝑗 are unitary matrices
describing 𝑔𝑖 and 𝑟 𝑗 , respectively, 𝑖 = 0 ∼ 𝑡 , 𝑗 = 0 ∼ 𝑡 ′. We say that
𝐺 and 𝑅 are functionally equivalent if and only if𝐺 =𝑀𝑡 . . . 𝑀1𝑀0 =
𝑅 =𝑁𝑡 ′ . . . 𝑁1𝑁0. Since every unitarymatrix is inherently reversible,
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it means that𝐺 · 𝑅−1 = 𝐼 , where 𝐼 is the identity matrix. As a result,
we can formulate the equivalence checking model of two quantum
circuits 𝐺 and 𝑅 as EQ(1),

𝐺 · 𝑅−1 = (𝑀𝑡 . . . 𝑀0) · (𝑁𝑡 ′ . . . 𝑁0)−1

= (𝑀𝑡 . . . 𝑀0) · (𝑁 −1
0 . . . 𝑁 −1

𝑡 ′ )
= 𝐼

(1)

and then check if EQ(1) holds or not. If EQ(1) holds for 𝐺 and 𝑅, 𝐺
and 𝑅 are equivalent; otherwise, they are non-equivalent.

In the state-of-the-art [2], they exploited EQ(2) to detect the
non-equivalence of two quantum circuits 𝐺 and 𝑅, where 𝑉 is a
stimulus for simulation.

𝐺 ·𝑉 = (𝑀𝑡 . . . 𝑀0) ·𝑉 ≠ (𝑁𝑡 ′ . . . 𝑁0) ·𝑉 = 𝑅 ·𝑉 (2)

That is, when 𝐺 · 𝑉 ≠ 𝑅 · 𝑉 , 𝐺 ≠ 𝑅. However, when 𝐺 · 𝑉 = 𝑅 · 𝑉 ,
they conclude nothing, and need to try other stimuli.

In this work, we regard𝐺 ·𝑅−1 as a quantum system, and exploit
EQ(3) to detect the non-equivalence of two quantum circuits𝐺 and
𝑅.

𝐺 · 𝑅−1 ·𝑉 = (𝑀𝑡 . . . 𝑀0) · (𝑁 −1
0 . . . 𝑁 −1

𝑡 ′ ) ·𝑉 ≠ 𝑉 (3)

When EQ(3) holds, 𝐺 · 𝑅−1 ≠ 𝐼 ; i.e., 𝐺 and 𝑅 are non-equivalent.

Otherwise, it only indicates that 𝐺 · 𝑅−1 has a high probability to
be an identity matrix 𝐼 .

3 THE PROPOSED APPROACH

In this section, we present the proposed approach, which uses
a set of specially designed stimuli instead of randomly generated
stimuli for detecting the non-equivalence of two quantum circuits.

3.1 Detecting Non-equivalent Quantum Circuits

In the traditional simulation for quantum circuits, a selected
stimulus is limited to be one of 2𝑛 basis states, where 𝑛 is the
number of qubits in the quantum circuit. Each basis state has only
one element of 1, and the others are all 0s. As a consequence, it
can only check one out of 2𝑛 elements at a time in each row of
the unitary matrices representing quantum circuits 𝐺 and 𝑅. In
other words, when 𝐺 and 𝑅 are slightly different, a large amount
of simulations may be required. Thus, in this work, we propose
to use a set of specially designed stimuli to detect the difference
between𝐺 and 𝑅 efficiently and effectively. Each designed stimulus
is deliberately not in the form of a basis state. Hence, the output
of the corresponding simulation is meaningless. However, we can
exploit these designed stimuli to detect the non-equivalence of two
non-equivalent quantum circuits𝐺 and 𝑅 efficiently and effectively.
This is the proposed novel idea about quantum simulation using
classic computers. It is worth mentioning that the number of these
specially designed stimuli grows linearly rather than exponentially
with respect to the number of qubits 𝑛 in the quantum circuit.
Specifically, only𝑂(𝑛) simulation runs are required in our approach.

Let 𝑇 denote 𝐺 · 𝑅−1, and the original objective of equivalence
checking is to prove that𝑇 =𝐺 ·𝑅−1 is an identity matrix 𝐼 . However,
computing 𝑇 completely is very time-consuming. Thus, we turn to
check if 𝑇 is an identity matrix via simulation. Note that for better
readability, we use𝑇 · 𝑉𝑖 to represent a simulation using a stimulus
𝑉𝑖 on 𝑇 . However, it is actually conducted as EQ(4),

(𝑀𝑡 . . . 𝑀0) · (𝑁 −1
0 . . . 𝑁 −1

𝑡 ′ ) ·𝑉𝑖 (4)

(a)

(b)

(c)

(d)

Figure 4: (a) The original 𝑇 describing a 3-qubit quantum
system. (b) The resultant 𝑇 after the first run check. (c) The
resultant 𝑇 after the second run check. (d) The resultant 𝑇
after passing the binary checking.

i.e., a series of multiplications of a matrix and a vector from right
to left.

In the following paragraphs, we will introduce the set of spe-
cially designed stimuli, and explain why they work. First, we use a
stimulus with all the elements of 1s for computation. To meet the

identity of
∑2𝑛−1
𝑥=0 |𝛼2𝑥 | = 1, we multiply all the elements by

√
1
2𝑛 ,

and this stimulus is denoted as 𝑉𝑖𝑛𝑖𝑡 . If 𝑇 · 𝑉𝑖𝑛𝑖𝑡 ≠ 𝑉𝑖𝑛𝑖𝑡 , 𝑇 ≠ 𝐼 , i.e.,
we detect the non-equivalence of 𝐺 and 𝑅. Otherwise, we obtain∑2𝑛−1

𝑗=0 𝑥𝑖 𝑗 = 1 for 𝑖 = 0 ∼ (2𝑛 − 1), where 𝑥𝑖 𝑗 is the complex value

at the 𝑖𝑡ℎ row, and the 𝑗𝑡ℎ column in 𝑇 . Namely, for each row in 𝑇 ,
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the summation of all its complex values is 1. Based on our prelimi-
nary experiments, when a non-equivalent case passes this initial
simulation, i.e., 𝑇 ·𝑉𝑖𝑛𝑖𝑡 = 𝑉𝑖𝑛𝑖𝑡 , 𝑇 has a high probability of being
structurally similar to the identity matrix, and the matrix 𝑇 may
satisfy EQ(5) and EQ(6),

2𝑛−1∑
𝑗=0

𝑥𝑖 𝑗 = 1, 𝑥𝑖 𝑗 ∈ {0, 1}, 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤 𝑖 (5)

2𝑛−1∑
𝑖=0

𝑥𝑖 𝑗 = 1, 𝑥𝑖 𝑗 ∈ {0, 1}, 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑗 (6)

which means that there is only an element of 1 in each row and
each column. However, it is still possible that some elements of 1s
are located at wrong positions, i.e., 𝑥𝑖 𝑗 = 1, but 𝑖 ≠ 𝑗 . Thus, based
on this observation, we propose a set of specially designed stimuli
to examine these cases, and the number of designed stimuli grows
only linearly instead of exponentially to the number of qubits in
the circuits.

Condition 1 states a necessary condition of an identity matrix 𝐼 ,
where 𝑜𝑖 𝑗 represents the element of 1 in 𝐼 .

Condition 1 : If 𝐼 is an identity matrix, 𝑜𝑖 𝑗 in the first half rows must
stay in the first half columns, and 𝑜𝑖 𝑗 in the second half rows must
stay in the second half columns.

Wepropose amethod called binary checking to check if amatrix𝑇
meets Condition 1. We use an example to demonstrate the concept
of binary checking in Fig. 4. Note that we assume 𝑇 in Fig. 4(a)
satisfies EQ(5) and EQ(6), and𝑇 describes a 3-qubit quantum system.
Originally, the elements in the entire matrix 𝑇 are undetermined,
which are represented in question marks. To satisfy Condition
1, 𝑜𝑖 𝑗 must stay in the framed regions in Fig. 4(a). Therefore, in

the first run, we use the stimulus 𝑉1, 𝑉1 = [1 1 1 1 0 0 0 0]T for
simulation. When𝑇 ·𝑉1 =𝑉1, the undetermined regions of𝑇 shrink
into two sub-matrices 𝑇00 and 𝑇11 as shown in Fig. 4(b), where

𝑇 =
[
𝑇00 𝑇01
𝑇10 𝑇11

]
. In the second run, we use the stimulus 𝑉2, 𝑉2 =

[1 1 0 0 1 1 0 0]T for simulation. If 𝑇 passes the second run check,
i.e., 𝑇 · 𝑉2 = 𝑉2, the resultant 𝑇 is as shown in Fig. 4(c). Similarly,

in the last run, we use the stimulus 𝑉3, 𝑉3 = [1 0 1 0 1 0 1 0]T, to
check the undetermined regions. When 𝑇 passes all the simulation
runs in the binary checking,𝑇 is an identity matrix; otherwise,𝑇 is
not an identity matrix, and we detect the non-equivalence of two
quantum circuits.

The total number of runs in the binary checking is log 2𝑛 =
𝑛, which is linear instead of exponential growth with respect to
the number of qubits in a quantum circuit. Due to its regularity,
stimuli used in the binary checking can be transformed into the
corresponding decision diagrams easily. Also, to meet the identity

of
∑2𝑛−1
𝑥=0 |𝛼2𝑥 | = 1, we multiply all the elements of each stimulus

used in the binary checking by
√

1
2𝑛−1 .

These stimuli are designed based on our observation that when𝑇
passes the initial simulation, i.e.,𝑇 ·𝑉𝑖𝑛𝑖𝑡 =𝑉𝑖𝑛𝑖𝑡 ,𝑇 will satisfy EQ(5)
and EQ(6) with a very high probability. Although this probability
is not 100%, according to the experimental results, our approach
with these designed stimuli can detect the non-equivalence of all
the non-equivalent benchmarks. As for the equivalent cases, which
will pass the binary checking, we can use other methods proposed

Figure 5: The overall flow of the proposed approach.

in [1] and [8] to prove their equivalence, which is not the scope of
this paper.

3.2 Overall Flow of the Proposed Approach

In this work, we propose a robust approach using a set of spe-
cially designed stimuli, which is novel and counter-intuitive. The
overall flow of the proposed approach is shown in Fig. 5. First, we

run an initial simulationwith the stimulus𝑉𝑖𝑛𝑖𝑡 = [𝛼0 𝛼1 . . . 𝛼2𝑛−1]T,
where 𝛼𝑖 =

√
1
2𝑛 for 𝑖 = 0 ∼ (2𝑛 − 1). When it passes the initial sim-

ulation, we perform the binary checking algorithm. Otherwise, we
detect the non-equivalence of two quantum circuits𝐺 and𝑅. During
the process of the binary checking, when a simulation conducted
in the binary checking detects the non-equivalence (NEQ) of two
quantum circuits 𝐺 and 𝑅, the process is terminated. Passing the
binary checking indicates that two quantum circuits 𝐺 and 𝑅 are
probably equivalent (Probably EQ), and then the methods proposed
in [1] and [8] can be used to prove their equivalence.

4 EXPERIMENTAL RESULTS

We implemented the proposed approach in C++ language on
top of the decision diagram package released by [15]. The imple-
mentation of the state-of-the-art method was from the source code
released by [2]. The experiments were conducted on a Linux plat-
form of Ubuntu 20.04.02 LTS with an Intel i9-11900 CPU (2.5 GHz
and 64 GB RAM).

To examine the effectiveness of our approach for detecting the
non-equivalence of two non-equivalent quantum circuits, we create
erroneous benchmarks by injecting errors into original benchmarks
provided in RevLib [12]. The error types include randomly remov-
ing, altering, and misplacing one quantum gate. For instance, we
take an original benchmark as a golden quantum circuit 𝐺 , and we
randomly remove one gate from 𝐺 to form an erroneous quantum
circuit 𝑅. To compare the effectiveness and the efficiency of our
approach against the state-of-the-art [2], we set the simulation run
(execution time) constraint to be 100 times (1 second).

The comparison of experimental results for the erroneous bench-
marks is summarized in TABLEs 1 ∼ 4. Since the state-of-the-art
[2] exploited random simulations to detect the non-equivalence
of two quantum circuits 𝐺 and 𝑅, the experimental results of the
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Table 1: The comparison of experimental results for the erroneous benchmarks created by removing one gate.

Benchmark Qubit |𝑔𝑎𝑡𝑒 | The state-of-the-art [2] Ours

#Sims CPU (s) Success rate (%) #Sims CPU (s) Success rate (%)
Sims Time Sims Time

4_49 4 16 1.93 0.01 100 100 3 0.01 100 100
alu4 22 1063 550.45 3.25 15 28 5 0.58 100 100
dist 13 185 1.00 0.01 100 100 2 0.01 100 100
dk17 21 49 145.17 0.03 44 100 4 0.01 100 100
ex1010 20 2611 408.90 5.25 20 15 4 0.03 100 100

example2 16 157 7.34 0.01 100 100 4 0.01 100 100
f51m 22 663 1.00 0.01 100 100 3 0.02 100 100
hwb9 9 1959 2.18 0.02 100 100 2 0.07 100 100
misex3 28 1752 524.48 6.55 19 18 6 0.19 100 100
rd84 15 28 2.16 0.01 100 100 4 0.01 100 100
ryy6 17 44 33.04 0.01 94 100 2 0.01 100 100
sym10 11 194 1.00 0.01 100 100 2 0.01 100 100
tial 22 1041 1990.82 11.85 4 7 4 0.06 100 100

Average 282.27 2.08 69 74 3.46 0.08 100 100
Ratio 26.0 1

Table 2: The comparison of experimental results for the erroneous benchmarks created by altering one gate.

Benchmark Qubit |𝑔𝑎𝑡𝑒 | The state-of-the-art [2] Ours

#Sims CPU (s) Success rate (%) #Sims CPU (s) Success rate (%)
Sims Time Sims Time

4_49 4 16 1.00 0.01 100 100 2 0.01 100 100
alu4 22 1063 477.19 2.76 16 32 6 0.35 100 100
dist 13 185 8.10 0.01 100 100 2 0.01 100 100
dk17 21 49 71.86 0.02 79 100 2 0.01 100 100
ex1010 20 2611 266.67 3.36 32 25 3 0.03 100 100

example2 16 157 66.74 0.04 83 100 3 0.01 100 100
f51m 22 663 1846.52 6.75 6 14 4 0.14 100 100
hwb9 9 1959 1.00 0.01 100 100 2 0.08 100 100
misex3 28 1752 567.71 6.93 17 16 4 0.12 100 100
rd84 15 28 1.79 0.01 100 100 4 0.01 100 100
ryy6 17 44 975.15 0.16 11 100 3 0.01 100 100
sym10 11 194 52.41 0.03 85 100 2 0.01 100 100
tial 22 1041 262.89 1.53 35 50 3 0.07 100 100

Average 353.09 1.66 59 72 3.08 0.07 100 100
Ratio 23.7 1

Table 3: The comparison of experimental results for the erroneous benchmarks created by misplacing one gate.

Benchmark Qubit |𝑔𝑎𝑡𝑒 | The state-of-the-art [2] Ours

#Sims CPU (s) Success rate (%) #Sims CPU (s) Success rate (%)
Sims Time Sims Time

4_49 4 16 1.34 0.01 100 100 2 0.01 100 100
alu4 22 1063 3.47 0.03 100 100 2 0.07 100 100
dist 13 185 2.38 0.01 100 100 2 0.01 100 100
dk17 21 49 3.47 0.01 100 100 2 0.01 100 100
ex1010 20 2611 118.03 1.52 53 42 4 0.12 100 100

example2 16 157 138.03 0.08 51 100 3 0.01 100 100
f51m 22 663 4.42 0.02 100 100 2 0.03 100 100
hwb9 9 1959 8.83 0.07 100 100 2 0.08 100 100
misex3 28 1752 254.38 3.19 32 24 6 0.45 100 100
rd84 15 28 1.29 0.01 100 100 7 0.01 100 100
ryy6 17 44 2.19 0.01 100 100 2 0.01 100 100
sym10 11 194 253.82 0.15 31 100 2 0.01 100 100
tial 22 1041 119.65 0.72 59 73 5 0.38 100 100

Average 70.1 0.45 79 88 3.62 0.02 100 100
Ratio 22.5 1

state-of-the-art are the averaged results obtained by performing
experiments for 100 times with random seeds. TABLE 1 shows
the experimental results for the erroneous benchmarks created by
randomly removing one quantum gate. The column |𝑔𝑎𝑡𝑒 | repre-
sents the number of quantum gates in the corresponding quantum

circuit 𝐺 . The column #𝑆𝑖𝑚𝑠 (𝐶𝑃𝑈 ) represents the number of sim-
ulation runs (execution time with one CPU core) until detecting
the non-equivalence of two quantum circuits 𝐺 and 𝑅. The column
𝑆𝑖𝑚𝑠 (𝑇𝑖𝑚𝑒) under 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 represents the percentage in the
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Table 4: The comparison of experimental results for the erroneous benchmarks created by injecting three types of errors.

Benchmark Qubit |𝑔𝑎𝑡𝑒 | The state-of-the-art [2] Ours

#Sims CPU (s) Success rate (%) #Sims CPU (s) Success rate (%)
Sims Time Sims Time

4_49 4 16 1.28 0.01 100 100 2 0.01 100 100
alu4 22 1063 1.00 0.02 100 100 2 0.20 100 100
dist 13 185 2.59 0.01 100 100 2 0.01 100 100
dk17 21 49 1.00 0.01 100 100 2 0.01 100 100
ex1010 20 2611 1.84 0.04 100 100 2 0.06 100 100

example2 16 157 8.06 0.01 100 100 3 0.01 100 100
f51m 22 663 1.00 0.01 100 100 3 0.10 100 100
hwb9 9 1959 1.19 0.01 100 100 2 0.07 100 100
misex3 28 1752 265.88 3.28 27 21 2 0.16 100 100
rd84 15 28 1.00 0.01 100 100 3 0.01 100 100
ryy6 17 44 18.87 0.01 98 100 2 0.01 100 100
sym10 11 194 1.00 0.01 100 100 2 0.01 100 100
tial 22 1041 30.43 0.19 95 99 4 0.32 100 100

Average 25.78 0.27 94 94 2.38 0.08 100 100
Ratio 3.4 1

corresponding method meeting the simulation run (execution time)
constraint.

For example, the state-of-the-art [2] spent 550.45 runs of simu-
lations and 3.25 seconds to detect the non-equivalence of 𝐺 and 𝑅
of alu4 benchmark on average. Only 15 (28) experiments met the
simulation run (execution time) constraint in 100 random experi-
ments. However, for the proposed approach, the success rates are
both 100%, and the averaged simulation runs and CPU time are
only 5 and 0.58 seconds, respectively. For other benchmarks such
as dk17, ex1010, misex3, and tial, the averaged simulation runs in
the state-of-the-art are also more than 100 times. Especially, for tial
benchmark, the success rate of the state-of-the-art is only 4% (7%)
under the simulation run (execution time) constraint. According
to TABLE 1, the averaged success rate of our approach is 100%
(100%), while that of the state-of-the-art is only 69% (74%) under
the simulation run (execution time) constraint. Our speedup is 26.0
on average.

TABLEs 2 and 3 show the experimental results for the erro-
neous benchmarks created by randomly altering or misplacing one
quantum gate, respectively. According to TABLEs 2 and 3, the av-
eraged success rates of our approach are both 100% (100%), while
those of the state-of-the-art are 59% (72%) and 79% (88%) under
the simulation run (execution time) constraint. TABLE 4 shows
the experimental results for the erroneous benchmarks created by
injecting all three types of errors including randomly removing,
altering, and misplacing one quantum gate. According to TABLE
4, the averaged success rate of our approach is 100% (100%), and
that of the state-of-the-art is 94% (94%) under the simulation run
(execution time) constraint.

From these experimental results, we realized that when fewer
errors are injected into the benchmarks, the success rate of the state-
of-the-art is lower, which means that random simulation approach
is hard to detect the non-equivalence of two more similar circuits.
However, in the proposed novel approach, the success rates are all
100%, and the averaged CPU time is less than 0.1 seconds for all the
experiments, which indicates that our approach is more efficient
and more robust than the state-of-the-art.

5 CONCLUSION

In this work, we propose a robust approach to detect non-equivalent
quantum circuits. Our approach uses a set of specially designed

stimuli instead of random stimuli, which is out of the traditional
frame in quantum circuit simulation. Moreover, our approach is
more efficient and more robust for detecting the non-equivalence
of two non-equivalent quantum circuits than the state-of-the-art
in terms of success rate in different sets of erroneous benchmarks.
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